सभी त्रिकोणमिति फार्मूला | Trikonmiti Formula

Trikonmiti Formula का उपयोग करके विभिन्न प्रकार के गणितीय समस्याओं को हल किया जाता है. जिसमे त्रिभुजों के कोण, लंबाई और ऊँचाइ के विभिन्न भाग और अन्य ज्यामितीय आकृतियां सामिल होती है. इन समस्याओं में त्रिकोणमितीय अनुपात से प्रश्न अधिक होता है.

गणित के सूत्र में त्रिकोणमितीय अनुपात और अनुपातों का पहचान बहुत उपयोगी होते हैं. इसलिए, सभी आवश्यक Trikonmiti Formulas यहाँ दिया गया है जो विभिन्न प्रकार के प्रशों को हल करने में मदद करता है.

त्रिकोणमितिय सूत्र प्रतियोगिता एग्जाम और बोर्ड एग्जाम में अच्छे मार्क्स दिलाने में एक अहम् किरदार निभाता है.

भारतीय गणितज्ञों के अनुसार, त्रिकोणमिति और इसके सूत्रों के उपयोग अत्यधिक मात्रा में होता है. जो भूगोल में भूगोल के बीच की दूरी, खगोल विज्ञान, पास के सितारों और उपग्रह नेविगेशन प्रणालियों में दूरी को मापने के लिए किया जाता है.

यहाँ त्रिकोणमिति अनुपात तथा त्रिकोणमिति सर्वसमिकावों (Trigonometry Identity) पर विशेष ध्यान केन्द्रित करेंगे. क्योंकि, यह त्रिकोणमिति का सबसे मुख्य भाग है जिसके मदद से प्रश्न सरलता से हल किया जाता है.

Table of Contents

त्रिकोणमिति क्या है

त्रिकोणमिति गणित की एक ऐसी शाखा है जिसके अंतर्गत त्रिभुज की भुजाओं और कोणों के बीच के संबंधों का अध्ययन करते है. त्रिकोणमिति पूरे ज्यामिति में पाई जाती है, क्योंकि प्रत्येक सीधी-पक्षीय आकृति को त्रिभुजों के संग्रह के रूप में तोड़ा जा सकता है. इसके अलावा, त्रिकोणमिति गणित की अन्य शाखाओं, विशेष रूप से जटिल संख्याओं, अनंत श्रृंखला, लघुगणक और कलन के साथ आश्चर्यजनक रूप से जटिल संबंध रखती हैं.

दरअसल Trigonometry ग्रीक के दो शब्दों से मिलकर बना है, जिसे निम्न प्रकार परिभाषित किया जाता है:

  • Trigonon  – जिसका अर्थ तीन कोण (Tri-angles) होता है.
  • Metron – इसका अर्थ मापना  (Measurement) होता है.

ये त्रिकोणमितिय शब्द 16वीं सदी का लैटिन व्युत्पन्न है, जो त्रिभुज (ट्रिग्नॉन) और माप (मेट्रॉन) के लिए ग्रीक शब्दों से लिया गया है.

दुसरें शब्दों में, त्रिकोणमिति किसे कहते है?

यह गणित की वह शाखा है जिसमे त्रिभुज के भुजाओं की लम्बाई तथा उनके कोणों के बीच स्थापित सम्बन्ध की व्याख्या करता है, उसे त्रिकोणमिति कहते है.

आमतौर पर त्रिकोणमिति में उपयोग किए जाने वाले कोण के 6 होते हैं, जो इस प्रकार है:

त्रिकोणमिति फलनसंक्षिप्त रूप
Sine (ज्या)Sin
Cosine (कोज्या )Cos
Tangent (स्पर्शज्या)Tan
Co-secant  (व्युज्या)Cosec
Secant (व्युकोज्या)Sec
Co-tangent (व्युस्पर्शज्या)Cot

त्रिकोणमिति के सभी सूत्र

Trikonmiti फार्मूला का प्रयोग त्रिभुज के तीनों भुजाओं को मापने के लिए किया जाता है. एक समकोण त्रिभुज में, तीन भुजाएँ होती है जिसका नाम कर्ण, लम्ब और आधार होता है.

किसी भी Trikonmiti Formula निरूपण निम्न कथन से किया जाता है:

एक समकोण त्रिभुज में, कर्ण का वर्ग त्रिभुज के अन्य दो पक्षों के वर्गों के योग के बराबर होता है.”

समकोण त्रिभुज की भुजाओ की परिभाषा निम्न प्रकार होती है:

कर्ण: 90° के सामने वाली भुजा को समकोण कहा जाता है.

लम्ब: वैसी भुजा जो आधार के साथ 90 डिग्री का कोण बनाती हैं, उसे लम्ब कहा जाता है.

आधार: समकोण त्रिभुज में शेष भुजा को आधार कहा जाता है.

त्रिकोणमिति के सामान्य फार्मूला

गणित में त्रिकोणमिति के 6 फलनों का अध्ययन विशेष रूप से किया जाता है, जो त्रिभुज के भुँजाओं एवं कोणों को मापने में मदद करता है. इसके उपरांत सभी फार्मूला प्रयोग में आते है.

  • sinθ = लम्ब/कर्ण = p / h
  • cosθ = आधार/कर्ण = b / h
  • tanθ = लम्ब/आधार = p / b
  • cotθ = आधार/लम्ब = b / p
  • secθ = कर्ण/आधार = h / b
  • coescθ = कर्ण/लम्ब = h / p

त्रिकोणमितिय अनुपातों के बिच सम्बन्ध

sin, cos, tan, sec, cosec, और cot ये सभी समकोण त्रिभुज के भुजाओं एवं कोणों के मापने में सबसे प्रमुख किरदार निभाते है. इसलिए, इनके संबंधो के विषय में जानकारी भी त्रिकोणमिति के सभी सूत्र है. जिसका प्रयोग कर प्रश्न हल किया जाता है. हालांकि, यह प्राथमिक इकाई है लेकिन ये फार्मूला सबसे अहम् होते है. जो इस प्रकार है.

  • sinθ × Cosecθ = 1
  • sinθ = 1 / Cosecθ
  • Cosecθ = 1 / sinθ
  • Cosθ × Secθ = 1
  • Cosθ = 1 / Secθ
  • Secθ = 1 / Cosθ
  • Tanθ × Cotθ = 1
  • Tanθ = 1 / Cotθ
  • Cotθ = 1 / Tanθ
  •  Tanθ = sinθ / Cosθ
  • Cotθ = Cosθ / sinθ

अवश्य पढ़े, समान्तर श्रेढ़ी महत्वपूर्ण फार्मूला

महत्वपूर्ण त्रिकोणमिति सूत्र

इस त्रिकोणमिति सूत्र का प्रयोग ज्यादातर प्रश्न हल करने के लिए होता है, जिसे याद करना आवश्यक है.

  • Sin θ / Cos θ = Tan θ
  • Cos θ / Cot θ = Sin θ
  • Cot θ / Cosec θ = Cos θ
  • Cosec θ / Sec θ = Cot θ
  • Sec θ / Tan θ = Cosec θ
  • Tan θ  / Sin θ  = Sec θ 

त्रिकोणमितिय टेबल

त्रिकोणमिटी में कोणों का मान निकालने की विधि एक से अधिक होता है. लेकिन यहाँ सिर्फ 0°, 30°, 45°, 60° और 90° के याद करने के दृष्टिकोण से दिया गया है. त्रिकोणमिति सारणी सिद्ध करने का तरीके आगे पढ़ेंगे.

संकेत30° = π/645° = π/460° = π/390° = π/2
Sin θ0½1/√2√3/21
Cos θ1√3/21/√2½0
Tan θ01/√31√3अपरिभाषित
Cot θअपरिभाषित√311/√30
Sec θ12/√3√22अपरिभाषित
Cosec θअपरिभाषित2√22/√31

त्रिकोणमितीय सर्वसमिकाएँ (Trigonometric Identities)

sin²θ + cos²θ = 1

  • sin²θ = 1 – cos²θ
  • sinθ = (1 – cos²θ)
  • cos²θ = sin²θ – 1
  • cosθ = ( sinθ – 1 )

1 + tan²θ = sec²θ

  • tan²θ = sec²θ – 1
  • tanθ = √(sec²θ – 1)
  • secθ = √(1 + tan²θ)

cosec²θ = cot²θ + 1

  • cosecθ = √(cot²θ + 1)
  • cot²θ = cosec²θ – 1
  • cot²θ = √(cosec²θ – 1)

इसे भी पढ़े, रैखिक समीकरण फार्मूला

कोणों के त्रिकोणमितीय अनुपात | All Trikonmiti Formula

प्रथम चतुर्थांश में यानि 90 का फलन Sin – Cos में, Tan – Cot में और Cosec – Sec में बदल जाता है.

  • sin(90°−θ) = cos θ
  • cos(90°−θ) = sin θ
  • tan(90°−θ) = cot θ
  • cot(90°−θ) = tan θ
  • sec(90°−θ) = Cosec θ
  • Cosec(90°−θ) = sec θ

त्रिकोणमिति सूत्र में इसे निम्न प्रकार भी व्यक्त किया जाता है:

  • sin (π/2 – A) = cos A
  • cos (π/2 – A) = sin A
  • sin (π/2 + A) = cos A
  • cos (π/2 + A) = – sin A
  • sin (3π/2 – A)  = – cos A
  • cos (3π/2 – A)  = – sin A
  • sin (3π/2 + A) = – cos A
  • cos (3π/2 + A) = sin A
  • sin (π – A) = sin A
  • cos (π – A) = – cos A
  • sin (π + A) = – sin A
  • cos (π + A) = – cos A
  • sin (2π – A) = – sin A
  • cos (2π – A) = cos A
  • sin (2π + A) = sin A
  • cos (2π + A) = cos A

अवश्य पढ़े, अलजेब्रा का महत्वपूर्ण फार्मूला

त्रिकोणमितीय फलन का चिन्ह

  • sin(−θ) = − sinθ
  • cos(−θ) = cosθ
  • tan(−θ) = − tanθ
  • cosec(−θ) = − cosecθ
  • sec(−θ) = secθ
  • cot(−θ) = − cotθ

त्रिकोणमितीय दो कोणों के योग एवं अंतर

  • Sin(A+B) = Sin A . Cos B + Cos A . Sin B
  • Sin(A-B) = Sin A . Cos B − Cos A . Sin B
  • Cos (A+B) = Cos A . Cos B − Sin A . Sin B
  • Cos ( A-B ) = Cos A . Cos B + Sin A . Sin B
  • Tan ( A + B ) = (Tan A + Tan B) / ( 1 − Tan A . Tan B)
  • Cot ( A + B ) = (Cot A . Cot B − 1) / (Cot B + Cot A)
  • tan(A – B)= ( tan A – tan B )/ ( 1 + tan A . tan B )
  • cot(A – B) = (cot A . cot B + 1) / ( cot B – cot A )

इसे भी पढ़े, बहुपद का फार्मूला

आधा कोण का सूत्र | अपवर्त्तक कोण

  • Sin θ = 2 Sin ( θ/2 ) . Cos ( θ/2 )
  • Cos θ = cos2( θ/2 ) – sin2( θ/2 ) Or 1–2sin2( θ )

Note:-
ऐसे कोण के फार्मूला में उपर दिए गए की तरह व्यवस्थित किया जाता है.

दो त्रिकोणमितिय कोणों का सूत्र

  • sin( 2θ ) = 2sin( θ ) • cos( θ ) = [ 2tan θ / (1+tan2 θ )]
  • cos( 2θ ) = cos2( θ ) – sin2( θ ) = [ (1- tan2  θ ) / ( 1+tan2 θ )]
  • cos( 2θ ) = 2cos2( θ )−1 = 1–2sin2( θ )
  • tan( 2θ ) = [ 2tan( θ )] / [1−tan2( θ )]
  • sec ( 2θ ) = secθ / (2-sec2 θ )
  • Cosec ( 2θ ) = (sec θ . Cosec θ ) / 2

तीन त्रिकोणमितिय कोणों का सूत्र

  • Sin 3θ = 3sin θ – 4sin3 θ
  • Cos 3θ = 4cos3 θ – 3cos θ
  • Tan 3θ = [3tan θ – tan3 θ ] / [ 1 – 3tan2 θ ]
  • Cos 3θ = [cos3θ – 3cos3 θ ] / [ 3cos2 θ -1 ]

sin θ तथा cos θ का योग त्रिकोणमितिय फार्मूला

  • 2sin A . sin B = cos(A – B) + cos(A + B)
  • sin A . cos B = sin(A + B) + sin(A – B)
  • 2cos A . sin B = sin(A + B) – sin(A – B)
  • 2cos A . cos B = cos(A + B) + cos(A – B)
  • sin C + sin D = 2sin(C+D / 2) . cos(C-D / 2)
  • sin C – sin D = 2cos(C+D / 2) cos(C-D / 2)

त्रिकोणमितीय अनुपातों के चिन्ह एवं फार्मूला

  • त्रिकोणमितिय चतुर्थांश में केवल 90° और 270° चेंज होते है 180° और 360° नही बदलते है.
  • प्रथम चतुर्थांश में,
    • सभी त्रिकोणमितिय अनुपात धनात्मक होता है.
  • द्वितीय चतुर्थांश में,
    • केवल Sin और Cosec धनात्मक होते है शेष ऋणात्मक होते है.
  • तृतीय चतुर्थांश में,
    • Tan और Cot धनात्मक, शेष ऋणात्मक होते है.
  • चतुर्थ चतुर्थांश में,
    • Cos और Sec धनात्मक, शेष ऋणात्मक होते है.
  • कोण की चाल घड़ी के विपरीत दिशा में पॉजिटिव एवं घड़ी के दिशा में नेगेटिव (माइनस) होता है.
प्रथम चतुर्थांश में त्रिकोणमितिय अनुपातों का मान

सभी धनात्मक (All Positive)

(900 – θ) के लिए फलनों के मान (3600 + θ) के लिए फलनों के मान 
Sin (900 – θ) = Cos θ     
Cos (900 – θ) = Sin θ
Tan (900 – θ) = Cot θ
Sec (900 – θ) = Cosec θ
Cot (900 – θ) = Tan θ
Cosec(900-θ)= Sec θ
Sin (3600 + θ) = Sin θ     
Cos (3600 + θ) = Cos θ
Tan (3600 + θ) = Tan θ
Sec (3600 + θ) = Sec θ
Cot (3600 + θ) = Cot θ
Cosec (3600+θ) = Cosec θ
द्वितीय चतुर्थांश में त्रिकोणमितिय अनुपातों का मान

Sin ↔ cos और Cosec ↔ Sec धनात्मक (900 + θ) में बदलता है.

Sin ↔ Sin और Cosec ↔ Cosec धनात्मक (1800 –  θ), अर्थात नही बदलता है. 

(900 + θ) के लिए फलनों के मान (1800 – θ) के लिए फलनों के मान 
Sin (900 + θ) = Cos θ     
Cos (900 + θ) = – Sin θ
Tan (900 + θ) = – Cot θ
Sec (900 + θ) = – Cosec θ
Cot (900 + θ) = – Tan θCosec (900+θ) = Sec θ
Sin (1800 – θ) = Sin θ     
Cos (1800 – θ) = – Cos θ
Tan (1800 – θ) = – Tan θ
Sec (1800 – θ) = – Sec θ
Cot (1800 – θ) = – Cot θ
Cosec (1800-θ)= Cosec θ
तृतीय चतुर्थांश में त्रिकोणमितिय अनुपातों का मान

Tan ↔ Tan और Cot ↔ Cot धनात्मक (1800 + θ), नही बदलता है.

Tan ↔ Cot और Cot ↔ Tan धनात्मक (2700 –  θ) बदलता है.

(1800 + θ) के लिए फलनों के मान (2700 – θ) के लिए फलनों के मान 
Sin (1800 + θ) = – Sin θ     
Cos (1800 + θ) = – Cos θ
Tan (1800 + θ) = + Tan θ
Sec (1800 + θ) = – Sec θ
Cot (1800 + θ) = + Cot θ
Cosec (1800+θ) = -Cosec θ
Sin (2700 – θ) = – Cos θ     
Cos (2700 – θ) = – Sin θ
Tan (2700 – θ) = + Cot θ
Sec (2700 – θ) = – Cosec θ
Cot (2700 – θ) = + Tan θ
Cosec (2700-θ)= -Sec θ
चतुर्थ चतुर्थांश में त्रिकोणमितिय अनुपातों का मान

Cos ↔ Sin और Sec ↔ Cosec धनात्मक (2700 + θ) बदलता है.

Cos ↔ Cos और Sec ↔ Sec धनात्मक (3600 –  θ) नही बदलता है.

(2700 + θ) के लिए फलनों के मान (3600 – θ) के लिए फलनों के मान 
Sin (2700 + θ) = – Cos θ     
Cos (2700 + θ) = + Sin θ
Tan (2700 + θ) = – Cot θ
Sec (2700 + θ) = + Cosec θ
Cot (2700 + θ) = – Tan θ
Cosec (2700+θ) = – Sec θ
Sin (3600 – θ) = – Sin θ     
Cos (3600 – θ) = + Cos θ
Tan (3600 – θ) = – Tan θ
Sec (3600 – θ) = + Sec θ
Cot (3600 – θ) = – Cot θ
Cosec (3600-θ)= – Cosec θ

त्रिकोणमितिय फार्मूला के सम्बन्ध में महत्वपूर्ण तथ्य

गणित में Trikonmiti Formula को मुख्यतः दो भागों में विभक्त किया जाता है. पहला Trigonometry Ratio और दूसरा Trigonometry Identity. त्रिकोणमितीय आइडेंटिटी एक ऐसा सूत्र हैं जिनमें त्रिकोणमि के महत्वपूर्ण कार्य शामिल होते हैं.

त्रिकोणमितीय अनुपात को त्रिभुज के माप और त्रिभुज की भुजाओं की लंबाई के बीच संबंध ज्ञात करने के लिए प्रयोग किया जाता है. इसमें अत्यधिक फार्मूला होते है जिसकी सभी आवश्यक सूत्र ऊपर दिया गया है.

उम्मीद है आपको अवश्य पसंद आएगा. यदि Trikonmiti Formula में कोई संदेह हो, तो कृपया हमे कमेंट आवश्यक करे.

Leave a Comment