संख्याओं को गणित में संख्या पद्धति के माध्यम से परिभाषित किया जाता है. क्योंकि, संख्याओं का अध्ययन नंबर सिस्टम के द्वारा संपन्न होता है. Sam Sankhya भी संख्या प्रणाली का एक महत्वपूर्ण भाग है, जो 2 से पुर्णतः विभक्त होता है. सभी प्रतियोगिता एवं बोर्ड Exams में इस संख्या की मौजूदगी अधिक होती है. इसलिए, इसे नियम के अनुसार समझना आवश्यक है.
सम संख्याएँ सामान्यतः वे संख्याएँ होती है जो 2 से विभक्त होती है. लेकिन विषय संख्याएँ 2 से विभाज्य नही होती है. इसके अलावे भी कुछ तथ्य है जो इसे खास बनाता है. अतः सम संख्या परिभाषा, प्रयोग, उदाहरण आदि के साथ इसे सरलता से यहाँ समझने की प्रयास करते है.
लाभ और हानि फार्मूला | अलजेब्रा फार्मूला के सभी चार्ट |
घन और घनमूल फार्मूला | चाल, समय और दुरी फार्मूला |
अंकगणित फार्मूला त | चक्रवृद्धि ब्याज short Tricks |
साधारण ब्याज की शोर्ट ट्रिक्स | औसत कैसे निकालें फार्मूला |
सम संख्या किसे कहते है?
कोई भी पूर्णांक संख्याएँ जिसे 2 से पूर्णतः विभाजित किया जा सकता है, वह सम संख्या कहलाती है. आवश्यक नही है कि ये तथ्य केवल पूर्णांक संख्या पर ही लागू होती है बल्कि सभी संख्या इसमें शामिल है. सम संख्याओं का अंतिम अंक हमेशा 0, 2, 4, 6 या 8 के रूप में समाप्त होती हैं. जैसे:- 10, 12, 14, 16, 18, 22, …. आदि
जिस संख्या के इकाई स्थान पर 0, 2, 4, 6 और 8 संख्याएँ नही होती है वे विषय संख्या के रूप में परिभाषित की जाती है. अर्थात, जो संख्या सरलता से 2 से विभक्त हो जाती है, वह संख्या सम संख्या कहालती है.
सैम या विषय संख्या की पहचान कैसे करे?
दी गई संख्या को सम और विषम संख्या के रूप में परिभाषित करने के लिए संख्या के इकाई स्थान को जांचना होता है. यदि इकाई स्थान पर 0, 2, 4, 6 और 8 अंक होते है, तो वें Sam Sankhya है. अगर नही है, तो विषम संख्या है.
- सम संख्याएं इकाई स्थान 0, 2, 4, 6, 8 . पर समाप्त होती हैं.
- विषम संख्याएं इकाई स्थान 1, 3, 5, 7, 9 . पर समाप्त होती हैं.
Q. उदाहरण: बताएं 235164, 532461 में कौन-कौन सम और विषम संख्या ?
हल: संख्याएँ 235164 के इकाई स्थान पर अंक 4 है इसलिए, यह 2 से पुर्णतः विभक्त होता है. अतः 235164 एक Sam Sankhya है. जबकि संख्याएँ 532461 के इकाई स्थान पर 1 है जो 2 से विभक्त नही होता है. इसलिए, यह विषम संख्या है.
1 से 100 तक की सम संख्या
2 | 22 | 42 | 62 | 82 |
4 | 24 | 44 | 64 | 84 |
6 | 26 | 46 | 66 | 86 |
8 | 28 | 48 | 68 | 88 |
10 | 30 | 50 | 70 | 90 |
12 | 32 | 52 | 72 | 92 |
14 | 34 | 54 | 74 | 94 |
16 | 36 | 56 | 76 | 96 |
18 | 38 | 68 | 78 | 98 |
20 | 40 | 60 | 80 | 100 |
सम संख्या के गुण
- दो सम संख्याओं का योग हमेशा सम संख्या होता है.
- सम संख्याओं का घटाव हमेशा सम संख्या होता है.
- दो सम संख्याओं का गुणन हमेशा सम संख्या होता है.
- प्राकृत संख्या, पूर्ण संख्या, पूर्णांक संख्या, आदि सम संख्या हो सकते है.
- सम संख्या के इकाई स्थान का अंक 0, 2, 4, 6, 8 होता है.
पूछे जाने वाले समान्य प्रश्न FAQs
Q. 1 से 50 तक सम संख्या कितनी है?
हल: 1 से 50 तक की कुल सम संख्याओं की संख्या 25 है जो इस प्रकार है.
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50
Q. सबसे छोटी सम संख्या कौन सी है?
हल: सबसे छोटी सम संख्या 2 है.
Q. सम संख्या की परिभाषा क्या है?
उत्तर: वैसी पूर्ण संख्याएँ जो 2 से पूर्णतः विभक्त हो जाती हैं वह सम संख्याएँ कहलाती है. जैसे 2,4,10,12…. आदि.
अन्य गणितीय महत्वपूर्ण फार्मूला
अनुपात और समानुपात के सूत्र | रोमन संख्याएँ |
अपरिमेय संख्या परिभाषा | 1 से 20 तक पहाड़े |
अंकगणित फार्मूला | गणितीय संकेत का नाम |
परिमेय संख्या फार्मूला एवं तथ्य | प्रतिशत फार्मूला |

जिकेश कुमार इस वेबसाइट के फाउंडर है जिन्हें लगभग 5 वर्षो का कंटेंट राइटिंग अनुभव है. इस वेबसाइट उपलब्ध सभी जानकारी दर्शकों के पसंद एवं जरुरतों को ध्यान में रखकर तैयार किया गया है. इस वेबसाइट पर एजुकेशन महत्वपूर्ण जानकारी के साथ लोन एवं स्कॉलरशिप, सरकारी योजना, स्टडी टिप्स की भी जानकारी प्राप्त होगी.